19 research outputs found

    Crack fronts and damage in glass at the nanometer scale

    Full text link
    We have studied the low speed fracture regime for different glassy materials with variable but controlled length scales of heterogeneity in a carefully mastered surrounding atmosphere. By using optical and atomic force microscopy (AFM) techniques we tracked in real-time the crack tip propagation at the nanometer scale on a wide velocity range (mm/s - pm/s and below). The influence of the heterogeneities on this velocity is presented and discussed. Our experiments reveal also -for the first time- that the crack progresses through nucleation, growth and coalescence of nanometric damage cavities within the amorphous phase. This may explain the large fluctuations observed in the crack tip velocities for the smallest values. This behaviour is very similar to what is involved, at the micrometric scale, in ductile fracture. The only difference is very likely due to the related length scales (nanometric instead of micrometric). Consequences of such a nano-ductile fracture mode observed at a temperature far below the glass transition temperature in glass is finally discussed.Comment: 12 pages, 8 figures, submitted to Journal of Physics: Condensed Matter; Invited talk at Glass and Optical Materials Division Fall 2002 Meeting, Pittsburgh, Pa, US

    Fracture of glassy materials as detected by real-time Atomic Force Microscopy (AFM) experiments

    Full text link
    We have studied the low speed fracture regime for different glassy materials with variable but controlled length scales of heterogeneity in a carefully mastered surrounding atmosphere. By using optical and atomic force (AFM) microscopy techniques we tracked in real-time the crack tip propagation at the nanometer scale on a wide velocity range (1 mm/s and 0.1 nm/s and below). The influence of the heterogeneities on this velocity is presented and discussed. Our experiments revealed also -for the first time- that the crack advance proceeds through nucleation, growth and coalescence of nanometric damage cavities inside the amorphous phase, which generate large velocity fluctuations. The implications of the existence of such a nano-ductile fracture mode in glass are discussed.Comment: 6 pages, 5 figures, submitted to Applied surface Scienc

    Statistical Physics of Fracture Surfaces Morphology

    Full text link
    Experiments on fracture surface morphologies offer increasing amounts of data that can be analyzed using methods of statistical physics. One finds scaling exponents associated with correlation and structure functions, indicating a rich phenomenology of anomalous scaling. We argue that traditional models of fracture fail to reproduce this rich phenomenology and new ideas and concepts are called for. We present some recent models that introduce the effects of deviations from homogeneous linear elasticity theory on the morphology of fracture surfaces, succeeding to reproduce the multiscaling phenomenology at least in 1+1 dimensions. For surfaces in 2+1 dimensions we introduce novel methods of analysis based on projecting the data on the irreducible representations of the SO(2) symmetry group. It appears that this approach organizes effectively the rich scaling properties. We end up with the proposition of new experiments in which the rotational symmetry is not broken, such that the scaling properties should be particularly simple.Comment: A review paper submitted to J. Stat. Phy

    Glass breaks like metals, but at the nanometer scale

    Full text link
    We report in situ Atomic Force Microscopy experiments which reveal the presence of nanoscale damage cavities ahead of a stress-corrosion crack tip in glass. Their presence might explain the departure from linear elasticity observed in the vicinity of a crack tip in glass. Such a ductile fracture mechanism, widely observed in the case of metallic materials at the micrometer scale, might be also at the origin of the striking similarity of the morphologies of fracture surfaces of glass and metallic alloys at different length scales.Comment: 4 pages, 4 figures, to appear in Phys. Rev. Lett, few minor corrections, Fig. 1b change

    Scalable and Formable Tellurite-Based Transparent Ceramics for Near Infrared Applications

    No full text
    International audienceInnovative transparent tellurite polycrystalline ceramics are demonstrated to be simply elaborated by full and congruent crystallization of the 75TeO2–12.5Bi2O3–12.5Nb2O5 parent glass. The low temperature tellurite glass elaboration and its stability both enable the preparation of scalable tailor-shaped ceramics with high refractive index, transmission in the near infrared range up to 5.5 μm, and promising mechanical/thermal properties
    corecore